Distributed Object Storage Rebuild Analysis
via Simulation with GOBS

Justin M. Wozniak Seung Woo Son Robert Ross
MCS Division MCS Division MCS Division
Argonne National Laboratory Argonne National Laboratory = Argonne National Laboratory
Argonne, IL, USA Argonne, IL, USA Argonne, IL, USA
wozniak@mcs.anl.gov sson@mcs.anl.gov rross@mcs.anl.gov
Abstract be in a state of rebuild because of a partial failure suches th

loss of a component hard disk. Consider an example 960 PB

Community acceptance of the object storage devicestorage system consisting of 32,000 disk drives, each at 30
model as represented by standards and use in existing HPCTB. Using a responsible estimate of 10% disk mortality per
filesystems has enabled the development of more complexear [9], the system would unexpectedly retire an average
data storage systems. Object replicas may be placed in aof 8.76 disks per day, containing 263 TB of redundant data.
variety of ways to obtain various properties, such as scal- Restoring the nominal level of redundancy would require a
able lookup times, concurrent access to multiple objects, perpetual network commitment of 3.125 GB/s. Here, we
and efficient reorganization. The construction of a fully use coarse-grained simulation to investigate the impact of
functional object-based parallel filesystem is an enormousthis quantity of rebuild work on the overall filesystem.
effort, so evaluation of potential techniques and algarith
is typically performed by analysis or simulation. In this
work, we present an extensible simulator designed to eval- Traditional rebuild methods wait for the administrator to
uate multiple object placement models under fault-inducedinsert a replacement disk, then restore the nominal redun-
rebuilds. We use results obtained by the simulator to weighdancy level by moving data to the new disk. This delay
the benefits of simple object replica placement models. ~ in returning to the steady state expandshedow of vul-
nerability [1] in which data loss may occur as a result of
subsequent faults. The window can be shortened by im-
proving rebuild times through the application of an aggres-
sive fault response in which disk space is dynamically allo-
cated for replacement object replicas afijects are con-

Object-based storage systems form the basis of manycurrently transferredo multiple new locations. To investi-
parallel and distributed filesystems in use and under devel-gate this behavior, we developed the General OBject Space
opment today. A growing variety of schemes has been pro-(GOBS) simulator. As described below, this simulator al-
posed to place and locate objects on large storage systemgws the rapid evaluation of various combinations of al-
of up to 1,000 object servers. Beyond the challenges inher-gorithms and techniques used by parallel filesystems, in-
ent in the storage of ever-growing quantities of data, stor- cluding file/object generation, redundancy schemes, bbjec
age systems designed for use by massively parallel filesysplacement, rebuild mechanisms, and workload impact.
tems pose particular challenges for object storage place-
ment algorithms. Object placement algorithms approach the
problem of storage management as framed by multiple re- The remainder of this document is organized as follows.
quirements. The design evaluation of an object placementin the next section, we note existing object replica place-
scheme typically includes the lookup complexity, flexibil- ment schemes and filesystem simulators. In Section 3, we
ity, and redundancy provided. describe the aspects of the simulated system we intend to

High-performance storage systems in the 2015-2018model and measure and describe how this is carried out with
timescale are expected to contain over 1,000 servers andhe simulator. In Section 4, we investigate basic behavior o
tens of thousands of disks, serving an exabyte of data ormreplica placement schemes and measure the data loss char-
more [8]. In practice, such a filesystem will nearly always acteristics. In Section 5 we summarize our contributions.

1 Introduction

Client
" N [Statistics] [Logging] [Plotting]
[File/object] [Parallel read/write]

manipulation

[Workload] [Simulator] [Fault][Rebuild]
Object Pool Driver Core Injection Engine
Global Management Parameters Layout
Replica Rebuild Fault Filesystem File/Object Replica
Location Manager Notification Abstraction y, Generation Placement
Node Node Node [Workload] [Node Address] [Replica Address]
Generation Generation Generation
Objects || Stats Objects [Q] Objects || Stats

Figure 1. Simulated object storage cluster. Figure 2. GOBS simulator components.

3 Object Placement Simulation
2 Related Work
The GOBS simulator allows for the investigation of stor-
age performance and reliability characteristics, as dlestdr
in the Introduction. In particular, it models the behavibr o
Hashing has been widely used for data placement asthe storage network at a high level and is generally con-
it eliminates the cost of maintaining global maps for lo- cerned with the emergent characteristics of object place-
cating data items, including replicas. Distributed hash ta ment and movement for large numbers of large objects in
bles (DHTs) provide an interesting background for object a cluster of on the order of 1,000 storage nodes.
placement algorithms. While most of the schemes con- The simulated system is represented in Figure 1. At the
sidered here are literally DHTSs, the term typically implies top are client operations such as the insertion and location
systems designed for Internet-based storage systems, witf objects, as well as simulated read/write operationsgsin
correspondingly large scale and low reliability of indivad the object of our investigation is ultimately on user expe-
components. Notable file systems built on DHTs including rience with the simulated system. Next, the global man-
PAST [10] and FARSITE [7]. agement infrastructure is represented, including theobbje
placement mechanism, rebuild management, and metadata
such as filesystem abstractions. The GOBS simulator does

mary node through any data placement scheme and theﬁ](.)t.moOIeI control operations or metadata management ex-
places replicas on a server adjacent to the primary, that iS’pI|C|tIy. At the base, the collection of storage nodes is mod

an objectO with identifierx is placed on thé servers with eleg'th imulat t ted in Fi 5
identifiers closest ta:; k& is commonly 2 or 3. The chain er simulatorcomponents are represented in Figure <.

placement scheme is used not only in peer-to-peer systemém the top level are the desired outputs, including funaion

such as PAST and CFS, but also multiple distributed fiIesys—Stat'St'CS’ logs, _and grap_h|cal plot output. The ce_ntrajrnn_e
tems. anisms of the simulator include the Workload Driver, which

models user operations, the Rebuild Engine, which mod-
While chaining places replicas in a correlated manner, els fault-triggered operations, and the fault model based
it can suffer from load imbalance and poor failure recov- on mean-time-to-failure estimates (MTTF) as modeled by
ery time. Recently proposed distributed storage systemsan exponential distribution. At the bottom are the extensi-
such as Ceph [11] instead use a pseudo-random replicdle components, including the file/object generation mecha
placement algorithm. Ceph places objects using the undernism, and the replica placement schemes. Use cases may be
lying Reliable, Autonomic Distributed Object Store (RA- generated using simple techniques or by interpolating com-
DOS) [12], which replicates objects using the Replication plex distributions such as those given by published studies
Under Scalable Hashing (RUSH) [4] algorithm. Kinesis [6] This paper focuses on the effects of modifying the replica
achieves balanced utilization of storage and network re-location algorithm on the performance of rebuild operation
sources using three design features: partition of serméys i after a fault. Rebuilds are simulated in a coarse-grained
k disjoint segments; freedom of choice to allocate a servermanner: data tranfer times are approximated by dividing
to store and retrieve data based on current system availabilthe total data size by the data rate achievable on the storage
ity; and independent, pseudo-random spread of replicas inhardware in use; computation, metadata and control oper-
the system. ations are not considered. Upon replica loss, the required

Another commonly used replica placement scheme is
chaindata placement [3, 5, 10], which first chooses a pri-

35.0 R —
32,5 27.5
30.0 25.0 :74’\134:'/‘
27.5 22.5
8o ‘ ‘ gr0
§ 200 _5 17.5
g 17.5 § 15.0
= 150 S 125
E 12.5 r_g 10.0
10.0 7.5
7.5
5.0 5.0
2.5 2.5
0.0 0.0
100 200 1000 100 200 1000
node.count node.count
ll NEAREST R=3 -@- XOR R=3 -4 NEAREST R=4 - XOR R=4l ll NEAREST R=3 - XOR R=3 -4 NEAREST R=4 - XOR R=4]
Figure 3. Rebuild load maximum when replica Figure 5. Rebuild load maximum when replica
is pulled from primary node. is pulled from last node in replica chain.
30.0 .
275 a placement algorithm.
25.0
e 4.1 System Model
& 200
§ 17.5) . .)
S 150 The system modeled in this study is designed as follows.
5 125 The basic storage element is the storage server node, which
= 100 has an address in the object address space. Each node con-
7 tains multiple local RAID arrays of 30 TB disks. The unit of
ZZ failure is a whole RAID array; individual disk failures and
oo the performance impact of the resulting local RAID rebuild
100 2 ecount 1000 is not modeled. RAID arrays fail in accordance with the ba-
o NEAREST 73 & XOR 3 < NEAREST Rt <30k sic reliability formula [2]. Disks read and write data at 400
MB/s, the device transfer rate is the disk rate multiplied by
Figure 4. Rebuild load maximum when replica the performance boost offered by RAID. The whole system
is pulled from random node stores approximately 1 EB (exabyte) of user data objects.

The placement algorithm considered here is a chain
placement algorithm. ThBEAREST algorithm placesk
replicas of objectr on the nodes,. such thatz — s,.| is

object copy operations are tabulated and randomly schedminimized. TheXOR algorithm placesR replicas such that
uled. Copy operations are issued immediately as storage; xor s, is minimized [7]. Upon the loss of a RAID ar-

devices become available to perform them, and no device isray, each node applies the placement algorithm to determine

involved in more than one transfer at a time. which objects that it holds must be copied to restore the
nominal redundancy level. Replicas are then copied in con-
4 Simulator Results tinuous time; a given RAID array is involved in only one

copy at a time. The single closest servettis theprimary

In this section, we demonstrate the utility of the simula- N0de forz, the other replicas asecondaries
tor as applied to the replica chaining method. First, we use
the simulator to perform rebuilds after a storage fault and 4.2 Rebuild Hot Spots
identify the concurrency available under algorithmic sari
tions. Next, we run the simulator over a long timescale and Figures 3, 4, and 5 diagram the bottleneck in rebuild con-
produce overall rebuild traffic patterns and the typicattra currency under both algorithms at redundancy leyeis 3
fic pattern local to a rebuild, again under algorithmic vari- and R = 4. In these cases, the simplel EB filesystem
ations. Then, we show that the simulator can estimate useiis deployed onto a simulated storage network containing
data object loss rates, given a per-disk MTTF estimate andnode. count nodes, and the loss of a single RAID array

is simulated. The rebuild response is initiated immedyatel
upon the (instantaneous) global detection of the fault; the
system does not wait for the insertion of a new disk.

The loss of a local RAID array causes the loss of the
local replica of each object stored on that array. Thus, data
movementis triggered on server nodes that hold the remain-
ing replicas for these replicas. If an additional RAID array
is available on the same node, object data will be copied
from a neighbor node to the remaining array. If no arrays
are operational, the objects are and copied to other al&ilab

load fraction(%)
- NN oW W s
a3 n & u 8

=
o

v

server nodes. For each node count onakexis, the frac- S
tion of the rebuild workload (reads and writes) performed nodes involved
by the maximally loaded server node is reported, averaged = NEARESTR=3 N-600 -4 XORR=3 N=600

-4 NEAREST R=4 N=600 -4~ XOR R=4 N=600

over 10 runs.

In Figure 3, the replica is always copied from the pri-
mary node, simulating a case in which the system prefers to
control the consistency of the contents of each object at the
primary. The case in which a replica may be copied from

Figure 6. Rebuild load maximum when replica
is pulled from primary node.

any secondary node is considered in Figure 4, and the case 00

in which the last replica in the chain must be the replica 275

source is covered in Figure 5. Note that in these cases the 25.0

local storage layout and object count does not affect the re- S ziz

sult. S 17s
Each node participating in the rebuild performs some & 150

read and write operations to move data to the node that lost 7128

the replicas. For each node count on thaxis, the fraction o

of the rebuild workload (reads and writes) performed by the 50

maximally loaded server node is reported, averaged over 10 25

runs. B 3 4 5 6 7
Although each case shows considerable variation be- nodes involved

- NEAREST R=3 N=600 - XOR R=3 N=600
- NEAREST R=4 N=600 - XOR R=4 N=600

cause of the varying circumstances of the rebuild, avaglabl
rebuild concurrency in the chaining algorithm is limited by
the number of replicas. The objects involved are tightly
clustered in the address space, constraining the rebwtd pr
cess to a small number of nodes.

Figure 7. Rebuild load maximum when replica
is pulled from random node.

4.3 Rebuild Distributions 20

30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5

Figures 6, 7, and 8 diagram the same basic fault con-
ditions as the previous series of figures but show the load
performed by each node involved in the rebuild. Only the
system with 600 server nodes is considered. The nodes are

load fraction(%)

ordered by load level; the load fraction for node 0 is the 10.0
average workload fraction performed by the most heavily 75
loaded node, node 1 is the next heavily loaded node, etc., z‘;
until no more work is distributed to server nodes. 00
This shows that bottNEAREST and XOR produce the S ecimened]
expected high workload concentration near the site of the NAREST RS N800 = ORI a0
data loss, and the workload trails off for nodes farther from & NEAREST R=4 N=600 - XOR R=4 N=600

the fault site. The slope of the workload curves indicates

that some work may be distributed but that the central nodes Figure 8. Rebuild load maximum when replica
(node 0, etc.) will act as a bottleneck and cause a “long tail” is pulled from last node in replica chain.
effect. Thus, the redundancy level will be restored piece-

meal over time. The impact of this differentiated concur- Additionally, there is a notable correspondence between
rency is considered in the following experiments. Addition the workload distribution and the ability of the system to
ally, as shown, the use of additional replicas increases thesustain concurrent data transfers over time. In the chginin

ability of the system to distribute work to more nodes. scheme used here, the nodes that are peripherally involved
in the rebuild run out of work to do, so the concurrency
4.4 Rebuild Traffic level decreases over time. In a system with many consec-

utive, overlapping disk failures, this behavior could have

. . _ . significant effect on data loss.
We now investigate the impact of the non-trivial re-

build completion behavior on long timescale simulations in
the presence of potentially overlapping storage faults. As
shown in Figure 9, the system of interest to this investiga- L . .
tion is regularly in a state of replica repair. This figure-dia In this final case, we look at the ability of the simulator to

grams a 1 EB storage system serving data from nodes Withestimate the number of user data objects lost per year given
4 RAID arrays, each configured as RAID-5 (4+1). The in- @" algorithm and a per-disk MTTF. In this test, we inserted
dividual disk MTTF was 10 years. The mean time to disk the user objects and applied the methods from the previous
reinsertion was 1 day subsection, varying the per-disk MTTF over a range of un-

In Figure 10, we show average available rebuild concur- realistically low MTTF values. The quantity of data loss

rency in the hours following the fault for this system. The waz meﬁsure_d oFr! a peri(ibjgc: b?S'S f_or th?korlle yelar ruphs.
two configurations include a SAN-like system (“san”) with S SNOWN In Figure 11, data 10ss 1S uniikely uniess the
8 RAID arrays per node configured as RAID-6 (8+2) with 2 per-disk MTTF is setto an ggtremely low _/alue of less than
replicas per objectt — 2) and a cluster-like system (“tar- one year. Somewhat surprisingly, the “active” method loses

et”) with 4 RAID arrays per node configured as RAID-5 more objects than the “latent” method. Itis difficult to gen-
?4+1) We ran the sys%/err?in “active” resgponse mode (dis- eralize about such rare cases even with the traces from the

tributed sparing), in which the system immediately started S|mulat?r bl_lt ':[, may be the case that thE." extra work caused
making copies in response to a fault, and “latent” responseby the “active _meth_od h_as the potential to overload the
mode, in which the system waited for the faulty disk to be servers at certain critical times.
replaced before scheduling replica copies.

As shown, the active mode makes many additional © Summary
copies compared to the latent mode. This includes copies
that are made in direct response to the fault in addition to As object placement routines become more complex and
copies to the new empty disk, as well as intermediate copiesstorage systems add ever more component devices, the need
that may be made as a result of subsequent faults. The acto analyze the behavior of the overall system becomes more
tive mode is shown to be capable of quickly making use of pronounced. To address this need, we have presented the
high object transfer concurrency to reduce the window of design of a coarse-grained simulator to quickly evaluate th
vulnerability at the cost of greater network and disk load. ability of an algorithm and its variations on a simulated

4.5 Potential for Data Loss

[
=N WA W

h
-
© o

copies in flight

O R N WAV O N ®

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
time (days)

- NEAREST-target

Figure 9. Long timescale rebuild traffic report.

15.0

12.5

10.0

7.5

copies in flight

0.0

0 10 20 30 40

time (hours)

50 60 70

- NEAREST-active san -® NEAREST-active target
-4 NEAREST-latent san - NEAREST-latent target

Figure 10. Average rebuild concurrency over
time.

= e
=N W

—
15

Objects Lost per Year

O Rk N WS U O N ® ©

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Mean Time to Disk Failure (years)

- NEAREST-san-active -@- NEAREST-target-active
-4 NEAREST-san-latent - NEAREST-target-latent

|

Figure 11. Data loss rate for varying (ex-
tremely low) per-disk MTTFs.

large scale filesystem. w demonstrate the simulator’s abil-
ity to extract meaningful results including limits to comeu
rency during rebuilds§@.2), work distribution during re-
builds §4.3), rebuild-centered traffic patterng4(4), and
the data loss rate4.5).

The utility of the simulator and its results stand to be
improved. First, the network model could be improved by
making use of a congestion model, preferably above the
packet level. Second, it could be integrated with a more
complex local storage model that provides useful, coarse-
grained performance approximations for disks, RAID de-
vices, and the local object storage service. Third, addtio
implementations of other well-known placement algorithms
should be produced so that the community can run the var-
ious algorithms with modifications on simulated systems.

6 Acknowledgments

This research is supported by the Office of Advanced
Scientific Computing Research, Office of Science, U.S.
Dept. of Energy under Contracts DE-AC02-06CH11357.
Work is also supported by DOE with agreement number
DE-FC02-06ER25777.

References

[1] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos,
P. Maniatis, T. J. Giuli, and P. Bungale. A fresh look at the
reliability of long term digital storage. IEuroSys2006.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High performance, reliable secondary
storage ACM Computing Survey26(2), 1994.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFSPtac. Sym-
posium on Operating Systems Principl2801.

R. J. Honicky and E. L. Miller. A fast algorithm for online
placement and reorganization of replicated dat&rbc. In-
ternational Parallel and Distributed Processing Sympasiu
2004.

H.-l. Hsiao and D. J. DeWitt. Chained declustering: A
new availability strategy for multiprocessor database ma-

(2]

(3]

(4]

(5]

chines. InProc. International Conference on Data Engi-
neering 1990.
[6] J. MacCormick, N. Murphy, V. Ramasubramanian,

U. Wieder, J. Yang, and L. Zhou. Kinesis: A new approach
to replica placement in distributed storage systerA€&M
Transactions on Storagd(4), 2009.

P. Maymounkov and D. Mazieres. Kademlia: A peer-to-
peer information system based on the XOR metrid?foc.
Workshop on Peer-to-peer Systei2802.

Peter Kogge et. al. Exascale computing study: Technolog
challenges in achieving exascale systems. DARPA Informa-
tion Processing Techniques Office, 2008.

E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure tien

in a large disk drive population. IRroc. USENIX Confer-
ence on File and Storage Technologi2607.

A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer st
age utility. SIGOPS Operating System Revi@k(5), 2001.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance dis-
tributed file system. IfProc. Operating Systems Design and
Implementation2006.

S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn.
RADOS: A scalable, reliable storage service for petabyte-
scale storage clusters. Iroc. Petascale Data Storage
Workshop 2007.

(7]

(8]

(9]

[10]

[11]

[12]

The software will be released under an open source license.

